A simple derivation of the class operator of the $\operatorname{SU}(2)$ group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22591
(http://iopscience.iop.org/0305-4470/22/5/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:57

Please note that terms and conditions apply.

COMMENT

A simple derivation of the class operator of the $\mathrm{SU}(2$; group

J Rembieliński \dagger
Departamento de Matemáticas, Centro de Investigacion del IPN, Apartado Postal 14-740, México, DF CP 07000, México

Received 26 September 1988

Abstract

An elementary derivation of the class operator of the $\operatorname{SU}(2)$ group is presented, considerably simplifying the recent calculations of Fan and Ren.

In a recent paper, Fan and Ren (1988) apply their integration technique to obtain, after rather long and complicated calculations, the class operator of the rotation group. In this comment I demonstrate that their result can be obtained within an elementary group-theoretical framework without the use of sophisticated manipulations. Firstly, let us note that the class operator

$$
C=\int_{S^{2}} \mathrm{~d} \Omega \exp (\mathrm{i} \psi \boldsymbol{n} \cdot \boldsymbol{J})
$$

is $\mathrm{SU}(2)$ invariant. Here $\mathrm{d} \Omega$ is the standard measure on the unit sphere S^{2}, while $\exp (\mathrm{i} \psi \boldsymbol{n} \cdot \boldsymbol{J})$ is an operator representing the rotation through an angle ψ about the axis $\boldsymbol{n}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi \cos \theta)$. Indeed, for each operator $U(V), V \in \mathrm{SU}(2)$, of a unitary representation of $\operatorname{SU}(2)$ under consideration, we have

$$
U(V) C U^{\dagger}(V)=\int_{S^{2}} \mathrm{~d} \Omega \exp \left(\mathrm{i} \psi \boldsymbol{n} \cdot U(V) J U^{\dagger}(V)\right)=\int_{S^{2}} \mathrm{~d} \Omega \exp [\mathrm{i} \psi(R(V) \boldsymbol{n}) \cdot J]=C
$$

because of the transformation properties of the generators J^{k} under rotation and the invariance of the measure $\mathrm{d} \Omega$; here $R(V)$ is a rotation induced by V. So, for an irreducible representation of $\mathrm{SU}(2)$ we have $C=c I$ (I denotes the identity operator) as the consequence of Schur's lemma. Consequently, it is enough to calculate a diagonal element of C, say $\langle m, s| C|m, s\rangle=c$, where $m=-s,-s+1, \ldots, s$ is fixed, while $s=$ $0, \frac{1}{2}, 1, \ldots$ labels an irreducible representation of $\mathrm{SU}(2)$; we have used the standard notation $|m, s\rangle$ for base vectors of the underlying representation space. Explicitly

$$
c=\langle m, s| \int_{S^{2}} \mathrm{~d} \Omega \exp (\mathrm{i} \psi \boldsymbol{n} \cdot \boldsymbol{J})|m, s\rangle=\int_{S^{2}} \mathrm{~d} \Omega\langle m, s| \exp (\mathrm{i} \psi \boldsymbol{n} \cdot \boldsymbol{J})|m, s\rangle
$$

Now, the matrix elements of representations of $\mathrm{SU}(2)$ are quite well known; they can also be calculated in an elementary way (see e.g. Vilenkin 1968). They take an especially simple form for $m=s$ (Vilenkin 1968, p 116, equation (7)), namely

$$
\langle s, s| \exp (\mathrm{i} \psi n \cdot \boldsymbol{J})|s, s\rangle=\left(\cos \frac{1}{2} \psi-\mathrm{i} \sin \frac{1}{2} \psi \cos \theta\right)^{2 s}
$$

\uparrow Permanent address: Institute of Physics, University of Łódz, 90-236 Łódz, Poland.
where we have used the form of $\exp (i \psi n \cdot \boldsymbol{J})$ in the spinor representation, i.e. $\exp (\mathbf{i} \psi \boldsymbol{n} \cdot \boldsymbol{\sigma} / 2)=\cos \frac{1}{2} \psi+\mathrm{i} \boldsymbol{n} \cdot \boldsymbol{\sigma} \sin \frac{1}{2} \psi$, to identify the group parameters. Consequently $c=\int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{0}^{\pi} \sin \theta \mathrm{d} \theta\left(\cos \frac{1}{2} \psi-\mathrm{i} \sin \frac{1}{2} \psi \cos \theta\right)^{2 s}=2 \pi \int_{-1}^{1} \mathrm{~d} x\left(\cos \frac{1}{2} \psi-\mathrm{i} x \sin \frac{1}{2} \psi\right)^{2 s}$

$$
=\frac{4 \pi}{(2 s+1) \sin \frac{1}{2} \psi} \sum_{k=0}^{[s]}\left(\cos \frac{1}{2} \psi\right)^{2 s-2 k}\left(\sin \frac{1}{2} \psi\right)^{2 k+1}(-1)^{k}\binom{2 s+1}{2 k+1} .
$$

The sum on the right-hand side of the above formula is, however, simply the expression for the expansion of the $\sin \left[(2 s+1) \frac{1}{2} \psi\right]$ (Gradshteyn and Ryzhik 1980, p 27, equation (1.331.1)); so finally we have

$$
c=\frac{4 \pi}{(2 s+1)} \frac{\sin \left[(2 s+1) \frac{1}{2} \psi\right]}{\sin \frac{1}{2} \psi} .
$$

This is just the formula (30) of Fan and Ren (1988).

References

Fan H and Ren Y 1988 J. Phys. A: Math. Gen. 211971
Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic)
Vilenkin N J 1968 Special Functions and the Theory of Group Representations (Providence, RI: American Mathematical Society)

