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J.  Phys. A: Math.  Gen .  22 (1989) 591-592. Printed’in the U K  

COMMENT 

A simple derivation of the class operator of the SU(2) group 

J Rembieliriskit 
Departamento d e  Matemiticas,  Centro d e  lnvestigacion del IPN,  Apartado Postal 14-740, 
Mexico, DF C P  07000, Mixico 

Received 26 September 1988 

Abstract. An elementary derivation of the class operator of the SU(2)  group is presented, 
considerably simplifying the recent calculations of Fan and  Ren. 

In a recent paper, Fan and Ren (1988) apply their integration technique to obtain, 
after rather long and complicated calculations, the class operator of the rotation group. 
In this comment I demonstrate that their result can be obtained within an elementary 
group-theoretical framework without the use of sophisticated manipulations. Firstly, 
let us note that the class operator 

r 
c = JS2 d R  exp(i+n * J )  

is SU(2) invariant. Here d R  is the standard measure on the unit sphere S2, while 
exp(i+n J )  is an operator representing the rotation through an angle + about the axis 
n = (sin 0 cos cp, sin 8 sin cp cos e ) .  Indeed, for each operator U (  V), V E  SU(2), of a 
unitary representation of SU(2) under consideration, we have 

U (  V ) C U + (  V )  = J dR exp(i+n - U (  V ) J U + (  v ) )  = J dR exp[i+(R( V ) n )  J ]  = c 
S2 S’ 

because of the transformation properties of the generators J k  under rotation and the 
invariance of the measure dR; here R (  V) is a rotation induced by V. So, for an 
irreducible representation of SU(2) we have C = c l  (I denotes the identity operator) 
as the consequence of Schur’s lemma. Consequently, it is enough to calculate a diagonal 
element of C, say (m ,  slClm, s)=c,  where m =-s, - s + l , .  . . , s  is fixed, while s =  
0, $, 1 , .  . . labels an irreducible representation of SU(2); we have used the standard 
notation Im, s) for base vectors of the underlying representation space. Explicitly 

Now, the matrix elements of representations of SU(2) are quite well known; they can 
also be calculated in an elementary way (see e.g. Vilenkin 1968). They take an especially 
simple form for m = s (Vilenkin 1968, p 116, equation ( 7 ) ) ,  namely 

(s, sIexp(i9n * J)Js, s) = (cos +$ - i  sin $+ cos 
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where we have used the form of e x p ( i 9 n . J )  in the spinor representation, i.e. 
exp(i$n * a / 2 )  = cos $$+in * (+ sin ;$, to identify the group parameters. Consequently 

c = lozv d p  [: sin O dO(cos - i sin f$  cos = 27r dx(cos $$ - ix sin $ + ) 2 '  

The sum on the right-hand side of the above formula is, however, simply the expression 
for the expansion of the sin[(2s + I)+$] (Gradshteyn and Ryzhik 1980, p 27, equation 
(1.331.1)); so finally we have 

497 sin[(2s + I)+$] c=- 
(2s+1)  sin+$ 

This is just the formula (30) of Fan and Ren (1988). 
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